
Virtual Displacement Mapping Techniques: Fall’24
CSCI-580 Term Project Report
1st Justin Shi

Thomas Lord Department of Computer Science
University of Southern California

Los Angeles, California, USA
jmshi@usc.edu

2nd Matthew Tran
Thomas Lord Department of Computer Science

University of Southern California
Los Angeles, California, USA

mgtran@usc.edu

3rd Qihua ”Josh” Sun
Thomas Lord Department of Computer Science

University of Southern California
Los Angeles, California, USA

qihuasun@usc.edu

4th Chaeho Shin
Thomas Lord Department of Computer Science

University of Southern California
Los Angeles, California, USA

chaehosh@usc.edu

Abstract—Virtual Displacement Mapping, more commonly
referred to as Parallax Mapping, is a set of techniques where
parallax effects and the illusion of depth are achieved through
texture coordinate displacement based on view angle and surface
elevation without requiring geometry of higher detail. First
introduced in 2000, similar techniques were rapidly introduced
in the first half of 2000-2010, but generally fell out of favor by the
mid-2010s, being mostly replaced by true Displacement Mapping
through Tessellation. In this report, we will implement, examine,
and compare the results of Parallax Mapping and its variants in
HLSL using the Unity Engine. We will go over the algorithms
and principles behind each variation, and discuss their strengths
and failures cases. Finally, we will briefly examine why Parallax
Mapping and its derivatives fell out of favor.

Index Terms—virtual displacement mapping, image-based ren-
dering, texture mapping, relief mapping, surface details, real-time
rendering, 3D graphics

I. INTRODUCTION

The original basic Texture Mapping technique is a powerful
method for improving detail without requiring additional poly-
gons when rendering 3D scenes. The model vertices contain
texture coordinates (u, v) that are interpolated across polygons
alongside other vertex parameters and used to sample textures
to determine colors. These colors are then used in lighting
calculations to determine the final color of visible points. Thus,
we can create small-scale polygon interior detail complexity
instead of increasing geometry complexity.

However, because vertex parameters are linearly interpo-
lated, despite the arbitrary variation of texture color across a
polygon, lighting calculations still result in smoothly varying
intensities. This, combined with the view-independent nature
of texture coordinate interpolation, leads to textured polygons
appearing flat as we move around them (Fig. 1(a)).

In this report, we detail the implementation of five different
Virtual Displacement Mapping methods, as well as an im-
plementation of true Vertex Displacement Mapping, through
HLSL in the Unity Engine. We compare and contrast the six

TABLE I: Performance Measurement Environment Specifica-
tions

CPU Intel i9-13900K
GPU NVIDIA GeForce RTX 4090
RAM DDR5 128GB

Screen Resolution 3840 x 2160
OS Windows 11 Pro 23H2

methods, and discuss their strengths and failure cases as well
as performance.

II. IMPLEMENTATION DETAILS

A. Implementation Environment

All different displacement mapping techniques were im-
plemented in Unity 6 (6000.0.24f1). Unity allowed us to
streamline the process for setting up scenes, materials/textures,
and controls for manipulating the camera, so that we could
focus on shader implementation. Unity also provided sophis-
ticated profiling tools for assessing performance, as well as
lighting/shadowing frameworks that allowed us to demonstrate
the benefits of vertex displacement (as self-occlusion/self-
shadowing with virtual displacement techniques requires ad-
ditional manual shader implementation and does not affect
global illumination).

Performance was measured using the default Unity
Profiler, more specifically using the length of the
DrawOpaqueObjects call, which draws all opaque
objects in the scene excluding the skybox. Empty scenes
with just a sphere and a plane were set up with each shader
type applied to both objects, and then the range of draw call
execution lengths per frame across a time frame of a few
seconds was recorded.

The specifications of the local machine in which the per-
formance was measured is detailed in TABLE I.



(a) (b) (c) (d)

(e) (f) (g)

Fig. 1: Mapping Techniques Comparison.
(a) Texture Mapping (b) Normal Mapping (c) Parallax Mapping (d) Steep Parallax Mapping

(e) Parallax Occlusion Mapping (f) Relief Mapping (g) Vertex Displacement

B. Normal Mapping

1) Methods: Normal Mapping is a common improvement
that aims to address the issue of smoothly varying intensities.
It is itself an implementation of bump mapping, a general
technique in which the interpolated normal for a visible point
on a polygon is perturbed in some manner before being used
in lighting calculations. This results in the polygon appearing
to have small displacements across itself, becoming bumpy
(as the name suggests) instead of smooth and flat, despite still
introducing no additional geometry. In the case of Normal
Mapping, this is done by sampling a second texture that
encodes normals in tangent space as colors; these normals are
then transformed to the space in which lighting calculations
are performed and used in place of interpolated normals from
vertices.

In our implementation, we calculate the bitangent from the
cross product of the provided normal and tangent for vertices,
then interpolate these three vectors to approximate the axes
(and thereby construct the needed transformation matrix) of
tangent space for visible points.

2) Results Discussion: In comparison to basic Texture
Mapping, note that, despite the apparent increased detail, the
silhouette of geometry remains the same, and the surface
details are independent from the view direction (Fig. 1(b)).

C. Parallax Mapping

1) Methods: Parallax Mapping is a technique similar to
Normal Mapping, but based on different principles. It signif-
icantly improves the detail of a textured surface and gives it

a sense of depth. In Parallax Mapping, height or depth values
are introduced with height or depth map textures, and the
texture coordinates are altered higher or lower to match the
view direction and height map. The result will reach a similar
approach to Normal Mapping, where the surface may have
displaced geometry to reflect the details.

In our implementation, we scale the fragment-to-view di-
rection vector by the depth of the fragment on the depth
map to interpolate the displacements. We also applied Parallax
Mapping in conjunction with Normal Mapping to keep the
displacement consistent with the lighting.

2) Results Discussion: Compared to Normal Mapping, we
can see that the bricks have much clearer depth details.
Note the changing surface texture as the perspective changes,
resulting in a parallax effect (Fig. 1(c)). However, there are
two issues that exist, as can be seen in Fig. 2(a):

1. The gap between the bricks is sometimes overshadowed
by one of the bricks based on the view direction.

2. The depth detail is not obvious when looking from a
sharp angle (ex. looking at the left side of the plane in Fig.
2(a)).

Both issues are caused by inaccurate approximation when
depth changes rapidly.

D. Steep Parallax Mapping

1) Methods: Steep Parallax Mapping is an extension on
top of Parallax Mapping which focuses on providing more
accurate results, even with steep height changes, by taking a
number of samples. This is done by traversing depth layers
through the view ray until the layer’s depth value is less than



(a) (b) (c) (d) (e)

Fig. 2: Mapping Techniques at Oblique Angles.
(a) Parallax Mapping (b) Steep Parallax Mapping (c) Parallax Occlusion Mapping

(d) Relief Mapping (e) Vertex Displacement

the height map’s value. In this way, we can greatly improve
the accuracy of the displacement interpolation through a more
accurate estimation of the intersection between the view ray
and the virtual surface.

In our implementation, we followed McGuire’s approach
[3] to set up layers. We also dynamically change the number
of layers based on the view direction from between 8-32.
For example, when looking straight onto the surface, we will
reduce the number of layers as there isn’t as much texture
displacement at this angle.

We have also implemented the self-shadowing logic as a
hard shadow in the fragment shader by marching along each
of the light rays in the scene, starting from the estimated
intersection point on the virtual surface.

2) Results Discussion: Compared to Parallax Mapping, we
can see more accurate details at gaps and faces when viewing
from sharp angles (Fig. 1(d)), as well as self-occlusion and
self-shadowing. The texture now takes more time to render due
to the introduction of multiple depth layers (TABLE II), but
this is still within a reasonable amount of time as we change
the number of depth layers dynamically. The self-shadowing
effect is also clear and correct.

However, when looking from a close distance, we can
see jagged artifacts of multiple layers as a result of this
implementation (Fig. 2(b)).

E. Parallax Occlusion Mapping

1) Methods: Parallax Occlusion Mapping is based on the
same principles as Steep Parallax Mapping, but instead of
taking the texture coordinates of the first depth layer after
a collision, it will be linearly interpolated based on the
depth layer after and before the collision of the height map.
This improves the accuracy of the interpolation of vertex
displacement.

In our implementation, based on Tatarchuk and Buhler’s
studies [4], we kept most of the implementations from Steep
Parallax Mapping. On top of that, we assume the surfaces
are planar at the intersection of layers and thus perform the

’secant’ method, which is a linear search based on the two
depth layers before and after the intersection.

2) Results Discussion: The result produces an image sim-
ilar to the one with Steep Parallax Mapping, but successfully
removes the jagged layers thanks to the linear interpolation
(Fig. 1(e)). Furthermore, the added step for Parallax Occlusion
Mapping adds minimum complexity to the implementation,
and therefore the running time remains almost the same as
Steep Parallax Mapping (TABLE II).

However, due to depth being calculated based on the as-
sumption of planar surfaces between intervals, the mapping
between the layers is not exactly accurate and still has minor
aliasing issues (Fig. 2(c)).

F. Relief Mapping

1) Methods: Relief Mapping is based on the same princi-
ples as Steep Parallax Mapping, but the texture and normal
coordinates are refined after the first depth layer collision by
a binary search of some preset depth. This prevents aliasing
issues that are found in Steep Parallax Mapping at steep angles
when the number of depth layers is not sufficient.

This was implemented in the HLSL shader by adding the
binary search component after the layer search component in
the fragment shader. We followed the algorithm outlined by
Policarpo et al. [5]. We used a fixed binary depth of 6, which
ensures that the search resolution is at least equivalent to a
pure linear depth search of 512 layers. This ensures that the
correct texture and normal coordinates are found with a very
high fidelity.

2) Results Discussion: As can be seen in Fig. 1(f) and Fig.
2(d), Relief mapping produces good quality texturing with
almost little to no aliasing artifacts. However this comes at
a cost, as the performance requires approximately 15% more
render time per frame on the GPU compared to more efficient
methods like Steep Parallax Mapping or Parallax Occlusion
Mapping (TABLE II).



G. Vertex Displacement with Tessellation

1) Methods: Vertex Displacement is a technique that uses a
height map to displace mesh vertices, creating more complex
geometry. Each vertex is displaced using the depth map texel,
a scalar, and the vertex normal.

Tessellation is a technique that subdivides the triangles in a
mesh into smaller triangles. This is often used in conjunction
with vertex displacement, as it provides more vertices to
achieve greater geometric complexity.

Our naive and straightforward implementation was based
off a description by Szirmay-Kalos and Umenhoffer [6] and
utilizes the Tesselation functions provided by HLSL. The first
stage we implemented was the Hull Stage. This consists of
the Hull Function and the Patch Constant Function, which
generate tessellation factors and use them to subdivide an input
patch into smaller patches. Next was the Domain Stage, which
contains the logic for the newly created vertices and passes
them to the fragment shader. Since the Domain Stage handles
the logic for the newly created vertices, this is where the vertex
displacement was implemented. We read the texel value from
the depth map and multiplied it by an adjustable scalar and
the vertex normal to calculate the displacement vector. This
displacement vector was then used to adjust the position of
each vertex. The modified geometry can be seen where the
edge of the object is no longer flat (Fig. 1(g)) (Fig. 2(e)).

2) Results Discussion: The result produces more complex
geometry based on a depth map. This creates an image without
the view angle or aliasing issues of the virtual displacement
techniques. By changing the actual object geometry, we au-
tomatically get correct true silhouettes on the object itself.
Furthermore there is no need to implement custom shadows
in the fragment stage, as we can simply utilize the framework’s
implementation of shadows and other global lighting effects
to achieve details such as receiving or casting shadows, or
different shadow types such as soft-shadowing.

Performance is also excellent as seen in TABLE II, pri-
marily because in modern GPUs the performance bottleneck
comes from increased number of shader instructions rather
than the size of the geometry. Even at Tessellation Factors
of 20, which should produce on average 400 more triangles
per triangle, performance remains better than Steep Parallax
Mapping.

III. SUMMARY AND DISCUSSION

Overall, we can see that the various Virtual Displacement
Mapping techniques all have their advantages and disadvan-
tages. As you add more and more complexity and shader
instructions to refine the search for the intersection between
the view ray and the virtual surface and obtain a more accurate
texture map, you get a steadily increasing performance cost.
In fact, on modern GPU systems, adding more triangles
via tessellation and doing naive, true vertex displacement is
faster than typical virtual displacement mapping techniques
for reasonable geometries.

As such, while Virtual Displacement Mapping techniques
were popular in the 2000s when the main performance bottle-

TABLE II: Displacement Mapping Methods Performance

Displacement Method GPU Render Loop time range (ms)
Texture Mapping 0.005-0.006
Normal Mapping 0.006-0.007
Parallax Mapping 0.009-0.011

Steep Parallax Mapping 0.059-0.066
Parallax Occlusion Mapping 0.062-0.067

Relief Mapping 0.067-0.075
Vertex Displacement (20) 0.049-0.051

neck was geometry (as referenced in [6]), it has fallen out of
vogue in favor of true displacement mapping in contemporary
use. True displacement mapping simply offers higher quality
results with more features, such as complex shadows and
global effects, correct silhouettes, etc. at better performance.
While we knew this in the abstract, actually being able to
confirm this for ourselves was a surprise for us while we were
carrying out the project assignment.

ACKNOWLEDGMENTS AND DELIVERABLES

We would like to thank Professor Ulrich Neumann for his
series of great lectures on the basics of 3D Rendering and
providing us with the inspiration for this project.

We would also like to thank our lab TA John Manard for
his helpful guidance and support throughout the semester on
both the class slack channel and during the lab sessions.

Our implementation source can be found at:
https://github.com/usc-jmshi/csci 580 project.

A link to a downloadable demo of our implementation can
be found at: https://drive.google.com/file/d/
1b7FI0V4S2heT-GA76rLjNI3OavCxQJKH/view?usp=
sharing.

REFERENCES

[1] M. M. Oliveira, G. Bishop, and D. McAllister, “Relief texture mapping,”
in Proceedings of the 27th annual conference on Computer graphics and
interactive techniques (SIGGRAPH ’00), 2000, pp. 359–368, [Online].
doi:10.1145/344779.344947

[2] T. Kaneko et al., “Detailed Shape Representation with Parallax Map-
ping,” in Proceedings of ICAT 2001, 2001, pp. 205–208.

[3] M. McGuire and M. McGuire, “Steep Parallax Mapping,” Brown Uni-
versity, Apr. 1, 2005. Accessed: Oct. 27, 2024. [Online]. Available:
https://casual-effects.com/research/McGuire2005Parallax/index.html

[4] N. Tatarchuk and J. Buhler, “Practical dynamic parallax occlusion
mapping,” in ACM SIGGRAPH 2005 Sketches, 2005, p. 106, [Online].
doi: 10.1145/1187112.1187240.

[5] F. Policarpo, M. M. Oliveira, and J. L. D. Comba, ‘Real-time relief map-
ping on arbitrary polygonal surfaces’, in Proceedings of the 2005 Sym-
posium on Interactive 3D Graphics and Games, Washington, District of
Columbia, 2005, pp. 155–162, [Online]. doi: 10.1145/1053427.1053453

[6] L. Szirmay-Kalos and T. Umenhoffer, ‘Displacement Mapping on the
GPU - State of the Art’, Computer Graphics Forum, vol. 27, no. 1,
2008, pp. 1567-1592, [Online]. doi: 10.1111/j.1467-8659.2007.01108.x


